

Characterization and Modeling of Interfaces and Interphases in Polymeric Systems

F.R. Phelan Jr.

Polymers Division, NIST

1/23/02

Consortium Update

Interface and Interphase Morphology Project

- Injection molding of two-phase systems
 - » Predict injection molding filling
 - » Predict drop size distribution/morphology

Polymer Blend Injection Molding

Direct Multiphase Simulation

- "Diffuse Interface" Models
 - » e.g., Ginzburg-Landau, Lattice Boltzmann
- Difficulty: mismatched size scales
 - » Drop scale, microns
 - » Mold scale, cm to m
- Impractical for injection molding

Multiphase Flow Models

- Averaging Methods
 - » Phase averaged properties
 - » Predict microstructure from micro- or phase averaged model
- Models
 - » Data Based Models
 - Phase averaged properties
 - Little or No Dynamics
 - » Hierarchical Modeling
 - Combination of multiple simulation techniques at several length scales
 - » Tensor Methods
 - Phase averaged properties
 - Extensions to complex flow dynamics

Comparison with Tensor Model

Tucker and Wetzel, Area Tensor, 1998

Present Work

Drop size, PB/PI:55/45

Hierarchical Multiphase Modeling

Unit cell, 2-phase model -- Rigorous drop dynamics

Hierarchical Multiphase Modeling

Goals

- » Average size and orientation
- » Phase separating systems
- » Dynamics of breakup

FIDAP Adaptation

- » Add user defined subroutine for blend viscosity
- » Compute flow field and "streaklines"

Direct two-phase calculations on streaklines

- » Detailed microstructure prediction
- » Compute averages

Injection Molding Algorithm

Multiphase Flow Modeling (Microflow)

Methods

- » Lattice Boltzmann Methods, 3-D (Martys, Phelan)
- » Multi-component Navier-Stokes model (2-D)
- Boundary conditions on unit cell set from shear history along streaklines
- Initial condition set by feed condition at entrance to injection molding die

Unit Cell

Example: Injection Molding of Phase Separating System

Feed From Extruder: Phase Separating

Multiphase Calculation: 2-D Shear Flow

Growth Laws

$$R_{\parallel} = R_{\parallel 0} \left(\dot{\gamma} t \right)^{\alpha}$$

$$R_{\perp} = R_{\perp 0} \left(\dot{\gamma} t \right)^{\beta}$$

$$\alpha = 1.65, \beta = 0.33$$

Drop Size Distribution

Interior: Low Domain Growth

Summary

- Injection molding model
 - » FIDAP customized for polymer blends
 - User defined routines for viscosity and drop size
 - Predicts drop size distribution in the injected part from shear distribution
 - » Robust injection molding predictions, complex geometry, etc.
 - » "Back of the envelope" model
- Hierarchical Modeling
 - » FIDAP: Compute particle flow paths
 - » 2-phase flow models: Simulate drop evolution on flow path
 - » Compute appropriate averages to define distribution in complex flows